AF-3559

M.A./M.Sc. (Previous)
Term End Examination, 2017-18

MATHEMATICS
Paper - V

Advanced Discrete Mathematics

Time : Three Hours] [Maximum Marks : 100
[Minimum Pass Marks : 36

Note : Answer any five questions. Answer to each
question should begin on a fresh page. All
questions carry equal marks.

1. (a) Prove that the following is tautology :

(p—)q)—)[pv(q/\r)<—>q/\(pvr)]
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(2)

(b) Show that the following argument is valid

p
P4
q—>r

r

2. (a) Prove that direct product of two
semigroups 1S a semigroup.

(b) If (M, %) is a commutative monoid then
the set of all idempotent elements of M
forms a submonoid.

3. (a) State and prove the fundamental theorem
of homomorphism for semigroups.

(b) Let (M, %) be a monoid with identity
element e and (7,0) be any algebraic
structure. If f:M—T 1is onto and
satisfies

flaxb)=f(a)ef(b) Va,beM

Then prove that (7,0) is monoid with
f(e) as its identity element.

4. (a) Prove that in distributive lattice the
complement of an element is unique if it
exist.
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(3)
(b) Let (L <) is a lattice. Then prove that
av(bvc):(avb)vc Ya,b,ce L
where a v b =sup{a, b}

5. (a) In Boolean Algebra B prove that

(a +b)’ =a'-b'Va,be B
(b) In Boolean Algebra B prove that

pgr'+ pq'r+ p'qr = pq+qr+ pr
Vp,q,r€ B

6. (a) Express the following function into
disjunctive normal form

f(x,y,z):(x+y+z)(xy+x'z)’

(b) Draw the logic circuit for each of the
following expressions :

(i) f=(x+y)(x'+y'+2)()V-2)
@) f=xyz+x'z'+ "z

7. (a) Construct a grammar generating the
language

1={a”b”ci:n21izo}

(b) Describe the type of grammar in detail.
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8. (a) Design a finite state machine which can
add two binary numbers.

(b) State and prove pumping lemma.

9. (a) Prove that number of odd vertices in a
graph is always even.

(b) Prove that a simple graph with n vertices
and k components can have at most

(n—k)(n—k+1)
2

edges -

10. (a) Prove that a connected graph is an Euler
graph if and only if the degree of every
vertex in graph is even.

(b) Show that the maximum number of edges
in a complete bipartite graph of n vertices
2
is ™.
4

419 BSP_(4) 1,160



